

Techno-Economic Feasibility Assessment of Waste Heat Recovery for Greenhouse Operation in Northern B.C.

Stuart Mills – University of Calgary

Dr. Aggrey Mwesigye – University of Calgary, Schulich School of Engineering Adam Leece – Integrated Sustainability

Introduction	Results		Conclusion
British Columbia has approximately 2350 active oil and gas facilities. These operations produce a significant amount of waste heat. A typical compressor station produces exhaust gas between 330-550°C and a mass flow rate of 18,000 kg/h per unit. Heating in Canadian greenhouses accounts for 10% - 35% of total production costs and 70-80% of greenhouses' energy demands.	1600 1400 1200 1200 1000 1000 1000 1000 10	20 15 0 10 Lemberature 0 5 0 10 1 2 0 2 1 2 0 2 1 2 0 2 0 2 1 2 0 2 0 2 1 2 0 2 0 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	The ORC can generate between 2600 and 8000 MWh of electricity annually; after the ORC, the waste heat can provide 31536 GJ annually. The analysis showed that the proposed greenhouse consumed 7100 GJ of supplemental heating and 1138 MWh of electricity annually.

Research Question: Is it technically and economically feasible to meet a greenhouse's supplemental heating and electricity requirements in Northern British Columbia with waste heat from a natural gas compression station?

Methodology

Study Component	Analysis Tool				
Technical Feasibility	TRNSYS – building energy				
Assessment	modeling				
Economic Viability	Payback Period, Internal				
Assessment	Rate of Return, and Net				
	Present Value				
Environmental Impacts	CO ₂ emissions avoided				
Heat Transfer Fluid 350-500°C					
350-500°C					

ponomically tal heating m British atural gas ng energy Internal ind Net voided

expected payback period of 4.5 years, a 20-year NPV of CAD 1241 K, and a 20-year IRR of 31%.

The proposed greenhouse will save 1.94 kg CO_2 eq/kg tomato compared to a conventional greenhouse heated with natural gas, representing 335 tonnes of CO_2 eq annually.

Recommendations for Future Work

 Assess other economic opportunities to utilize the waste heat and compare their financial performance to that of a greenhouse.

Conduct a social cost-benefit analysis of the greenhouse focusing on its impact and benefits

0												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Supplemental Lighting Hot Water Pump Circulating Fans												
igure 4: Average Hourly Supplemental Heating Requirement												

Table 1: Economic Performance Compared to a Natural Gas Greenhouse

Waste h	leat gre	enhouse		Natural gas greenhouse					
Cash Flow	CAD 1000\$	Indicator		Cash Flow	CAD 1000\$	Indicator			
Capital	540	Pay Back	4.5 yrs	Capital	740	Pay Back	6.3 yrs		
Cost		Period		Cost		Period			
Annual	619	20-year	CAD	Annual	869	20-year	CAD		
Cost		NPV	1241 k	Cost		NPV	869 K		
Gross	847	20-year	31%	Gross	540	20-year	24%		
Revenue	Э	IRR		Revenue	Э	IRR			

Table 2: Economic Performance Compared to a Natural Gas Greenhouse

Emission SourceIntensity kg CO2eq / kg tomatoesPresent StudyNG Heated

to Indigenous people.

• Conduct a formal LCA of the greenhouse to establish the full scope of its environmental impacts and compare it to field-grown tomatoes.

Acknowledgments

I want to acknowledge Dr. Aggrey Mwesigye for his guidance and advice and Adam Leece for his expertise and support on this project as my industry sponsor.

References

 Ahamed, M. S., Guo, H., Taylor, L., & Tanino, K. (2019). Heating demand and economic feasibility analysis for year-round vegetable production in Canadian Prairies greenhouses. Information Processing in Agriculture, 6(1), 81–90. https://doi.org/10.1016/J.INPA.2018.08.005

 Ahmadpour, M., Roshandel, R., & Shafii, M. B. (2024). The effect of organic Rankine cycle system design on energy-based agro-industrial symbiosis. Energy Efficiency, 17(5). https://doi.org/10.1007/s12053-024-10221-0
Andrews, R., & Pearce, J. M. (2011). Environmental and economic assessment of a greenhouse waste heat exchange. Journal of Cleaner Production, 19(13), 1446– 1454. https://doi.org/10.1016/j.jclepro.2011.04.016
Castilla, N. (2013). Greenhouse Technology and Management, 2nd edition Nicolas Castilla ; translated by Esteban J. Baeza ; reviewed by A. P. Papadoupoulos. CABI.
Choab, N., Allouhi, A., El Maakoul, A., Kousksou, T., Saadeddine, S., & Jamil, A. (2019). Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. In Solar Energy (Vol. 191, pp. 109–137). Elsevier Ltd. https://doi.org/10.1016/j.solener.2019.08.042

