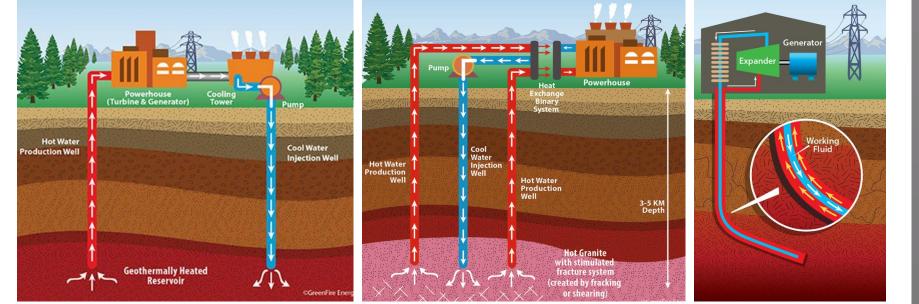
Techno-Economic Feasibility Study for a Deep Geothermal System at YYC Calgary International Airport

Authored by Leanne Komaromi, Supervised by Dr. Roman Shor¹ and Harris Switzman² ¹Texas A&M University, ²Calgary Airport Authority

Introduction


The Government of Canada has set ambitious net-zero targets for 2050, which have influenced similar targets across the country by provincial governments and industries. As part of an ambitious netzero strategy, the Calgary Airport Authority (CAA) is exploring behind-the-fence renewable energy generation to integrate with or replace current energy systems at YYC Calgary International Airport (YYC).

This work is aligned with United Nation's Sustainable Development Goals #7: Affordable and Clean Energy and #13: Climate Action.

Geothermal Systems & Application

There are three geothermal systems used to develop geothermal resources for heat or electrical energy: conventional, enhanced, and advanced (closed-loop). This study simulated a closed-loop geothermal system (CLGS) in u-loop configuration. Beyond uses for heating, cooling, and power; geothermal is also an energy storage resource and a mineral resource. The focus of this study was on energy generation via heat or electricity.

Methodology

- 1. Baseline energy demand was established using historic energy bills going back to 2018
- 2. A business-as-usual scenario was modelled to forecast energy consumption and resulting emissions and cost
- 3. An analysis of subsurface geology beneath YYC was conducted
- 4. The National Renewable Energy Lab's GEOPHIRES-X software was used to simulate geothermal system performance based on estimated subsurface conditions
- 5. These results were then compared against externally derived solar PV system performance to help guide net-zero pathway

Subsurface Analysis

Based on the well log analysis of formation tops in the study area, the thickness of the Leduc formation is estimated to be approximately 200 m at YYC. Based on the total vertical depth to formation tops from gamma ray logs, the estimated depths are 3000 m and 3200 m to the Leduc Formation and basal Cambrian sandstone (BCS), respectively. All the wells in the study area had recorded bottom-hole temperatures (BHT) that were used to estimate temperatures in the subsurface. Average BHTs were 84.6 and 74.3 for the Leduc Formation and BCS, respectively.

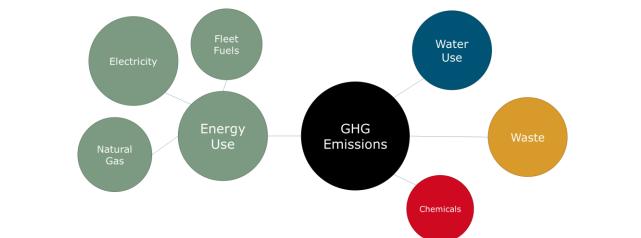
Figure: Sustainable Development Goals #7 and #13 (United Nations, 2015

Purpose and Objectives

To develop a better understanding of the environmental and economic performance of deep geothermal systems in low-enthalpy geothermal zones by evaluating the techno-economic performance of a closed-loop geothermal system (CLGS) configuration under reservoir properties estimated for YYC to meet forecasted energy demand and support the CAA's net-zero carbon targets. The main objectives are:

- 1. Analyze current energy demand of YYC
- 2. Forecast a business-as-usual (BAU) scenario from 2024-2060
- Analyze subsurface geologic conditions
- 4. Simulate a deep geothermal system based on subsurface conditions
- 5. Quantify and compare the energy, emissions, and economic results of the BAU case, the CLGS, and an externally assessed solar PV system to assess techno-economic feasibility
- 6. Make recommendations for next steps and future research

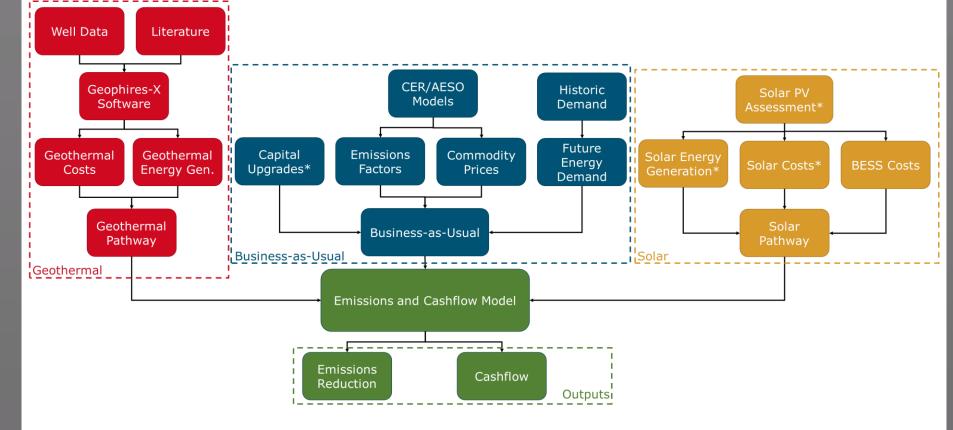
Geothermal Potential


In the thickest parts of the Western Canada Sedimentary Basin, along the eastern front of the Rocky Mountain deformation belt, temperatures are highest and range from around 110 to 120°C.

The study area at Calgary 60°N 115°W 110°W

Figure (top): Geothermal system designs with fluid colour in wells representing temperature (blue = cold; red = hot). a) Conventional permeable geothermal reservoir with a surface electricity plant and reinjection pump; b) Enhanced with a single injection, double production well configuration in a stimulated fracture system reservoir with surface plant and injection pump; c) a horizontal coaxial configuration closed-loop geothermal system with surface plant. (Think GeoEnergy, 2019)

YYC Calgary International Airport


The Calgary International Airport (YYC) is the fourth largest airport in Canada. In 2023, they served 18.5 million passengers and 200,000 flights. They are also a major supporter of the local economy, supporting 50,000 jobs in the Calgary region and contributing \$8 billion dollars in GDP impact (Calgary Airport Authority, 2024).

The CAA's net-zero strategy has a short-term goal of reducing GHG emissions by 30% over 2018 values by 2026, equivalent to 65,393 tCO2e emissions. In the long-term, the CAA strives for net-zero by 2050 in alignment with international, federal, and municipal climate action strategies.

2050 Goal 2026 Goal Reduce GHG emissions by 30% of 2018 Achieve net-zero scope 1 & 2 emissions YYC has two main terminal buildings, the International Terminal Building (ITB) and the Domestic Terminal Building (DTB). There is a combined 30 MW of thermal energy provided by this plant

decision-making at the Calgary Airport Authority. Data sources include publicly available well data; energy bills going back six years; internal documents and reports; and the literature.

Business-as-Usual

The business-as-usual case in this study is a projection of how the business will evolve between now and 2060, without any net-zero energy investments, but while meeting operational needs of the business as it exists now. a) Business-as-usual Annual Energy Consumption Forecas; Baseline Energy Demand Analysis of ENMAX bills dating back to 2018 found that the average electricity consumption was 111,454,868 kWh/year. The) Business-as-usual Annual Emissions Forecas highest consumption attributed the to terminal buildings which had an average of 100,655,850 kWh/year in the 40,000

CLGS Elec Solar Elec

(946,534)

(640.843)

(297,453)

(43,468)

(14,328)

(27,716)

(23,639,642)

(15,562,577)

(7,749,406)

(2,212,704)

(2.52)

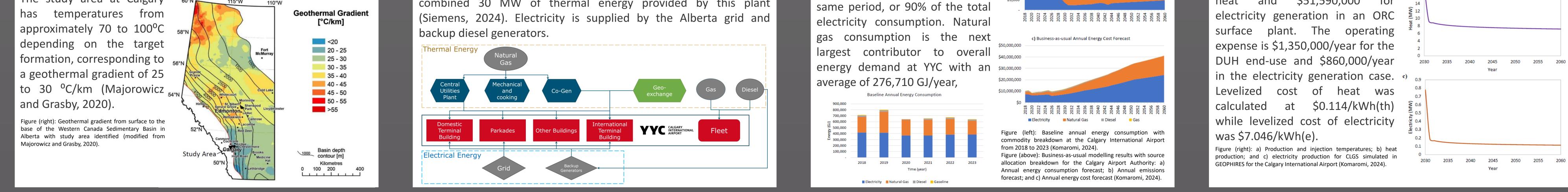
(4,239,98)

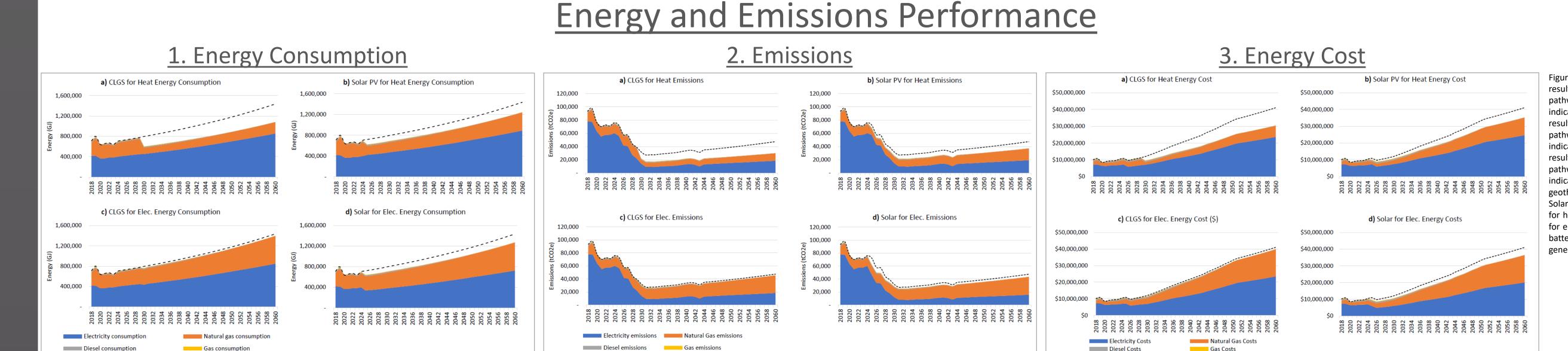
(3.899.021)

(127,19

(108,836

(16,703)


(99,506,236)


(91,076,571)

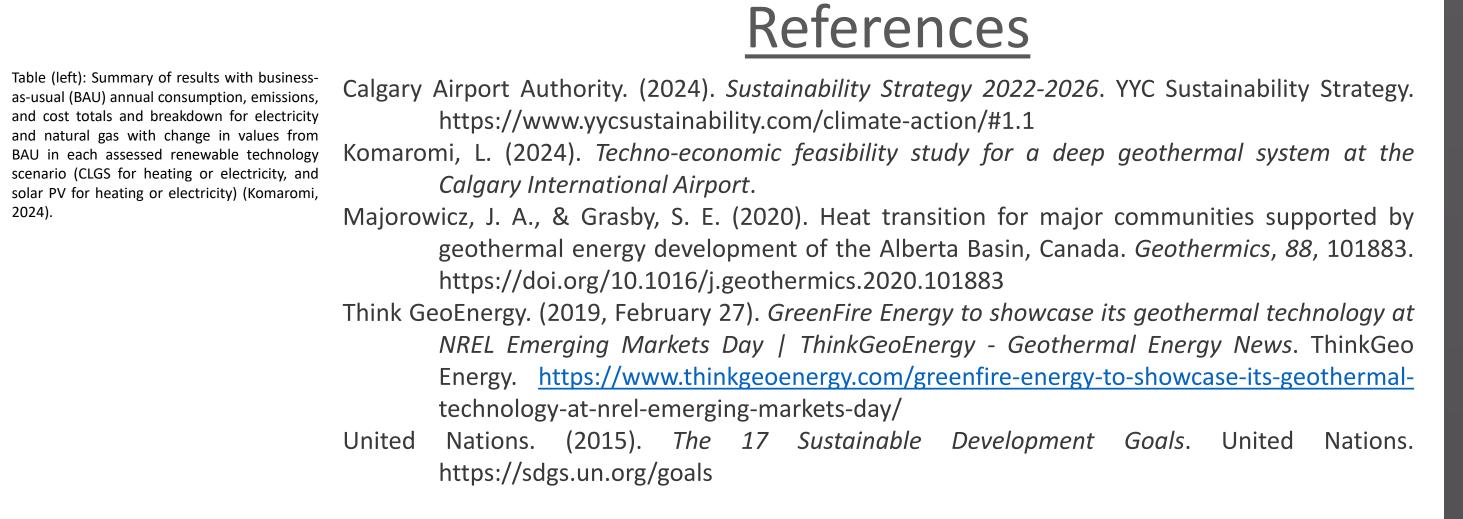
(8,008,568

(4,787,03

and	1 74.5 10			ion and bcs,	respectively.						
Depth (m)	Geologic Unit	Generalized Lithology	Temperature Profile (°C) 40 60 80 100	Shale	Only one well in the study area had recorded						
1600-	Colorado Grp			Sandstone	gas analysis data.						
1800-	Cardium			Carbonates	Analysis was done						
2000-	Fm Second White Specks Fm			Igneous rocks							
2200-	Bow Island Fm				higher up in the						
2200	Blairmore Grp				succession in the						
2400-					Wabamun Formation at						
2600-	Shunda Fm Banff &				an interval from 2500 m						
2000	Exshaw Fms Wabamun Fm				to 2520 m and shows						
-2800	Crossfield Mbr										
-3000-	Nisku & Ireton Fms				0.1227 ppm of hydrogen						
-3200-	Leduc Fm			Porosity 8-20%, BHT 80°C	Sulphide gas. Figure (left): Schematic stratigraphic column (Well ID 100/04-22-027 01W5) showing Formation						
	Cooking Lake Fm										
-3400	Basal	tops, thicknesses, and generalized lithology. Target intervals (Leduc Formation, basal									
-3600	sandstone unit Pre-Cambrian	Cambrian sandstone, and pre-Cambrian basement granite) are highlighted with estimated									
+100°C basement granite) are highlighted with estimated porosity and bottom-hole temperatures noted (Komaromi, 2024).											
Geothermal System											
A r	nultilate	ral close	ed-loop geo	thermal syst	em (CLGS) was simulated						
in	GEOPH	IRFS-X	hased on	<i>s</i> ubsurface	parameters and rock						
					•						
•	•			0 0	assessment. The system						
wa	s desigr	ned to	meet or e	xceed YYC's	natural gas for heating						
consumption. Electricity production with an ORC surface plant was											
simulated to enable comparison to solar PV and better aid decision											
making. a) 120 Injection Temperature											
The resulting average heat 100											
production is 7.83 MW(th) and g and											
production is 7.83 MW(th) and average electricity production is											
1/(0) k(M/h/o) based on an average											
	``			U							
production temperature of 71°C.											

Conclusion and Recommendations

In comparison of a closed-loop geothermal system to solar PV with battery energy Figure (left): 1. Annual energy consumpti storage system, neither renewable technology performs favourably in both heating results for each of the four renewable pathways assessed with business-as-usua and electricity end-use categories, with the CLGS performing better with heating indicated by dotted line. 2. Annual emissions results for each of the four renewable pathways assessed with business-as-usual end-use and the solar PV system performing better for electricity end-use. The indicated by dotted line. 3. Annual energy cost recommended approach is a combination of the two technologies in a pathway results for each of the four renewable pathwavs assessed with business-as-usual indicated by dotted line. a) Closed-loop where CLGS provides renewable heat energy while solar PV provides renewable geothermal system for direct-use heating; b) Solar PV with battery energy storage system electricity. Based on the results presented here, it is recommended that work to for heating; c) Closed-loop geothermal system for electricity generation; and d) Solar PV with refine the decarbonization roadmap and net-zero pathway continue, with a deep battery energy storage system for electricity geothermal system regarded as a viable option with comparable or better generation (Komaromi, 2024). performance to other, more widely familiar technologies. A deep geothermal


The resulting capital cost of the

CLGS is \$55,730,000 for direct-use

heat and \$51,590,000 for

system at YYC could serve as a catalyst for the geothermal industry in Alberta with wide-spread societal benefits.

Diesel consumption Gas consumption BAU	Diesel emissions Gas emissions Gas emissions	Diesel Costs	Gas Costs	-		
The CLCC for direct week best (DUU) seensis has a total energy	O Performance Criteria	Business-as-Usual	Change from BAU			
	consumption of 33,948,696 GJ from 2018 to 2060. This equates to		Dusilless-as-Usudi	CLGS Heat	Solar Heat	CLGS Ele
20% reduction from BAU. In this case, natural gas consumption	Total Energy Consumption (GJ)	42,226,209	(8,277,512)	(4,986,280)	(9	
tCO2e emissions over the study period compared to 1,947,431	Flast site Communities (CI)	25,163,004	(462,956)	425,058	(6	
	NG COnsumption (GJ)	16,383,198	(7,806,318)	(5,400,015)	(2	
designed for electricity production, the total energy consumpt	%	1				
reduction in energy compared to the BAU case (42,226,209 GJ).		Total Emissions (tCO ₂ e)	1,947,431	(406,788)	(262,216)	(
When configured for heating (using electric boilers), the sola	Electricity Emissions (tCO ₂ e)	1,070,384	(9,915)	12,184	(:	
	NG EIIISSIOIIS (ICO ₂ e)	830,137	(395,546)	(273,619)	(
results of a solar PV with battery storage for electricity generat						
associated with electricity use reduce from 1,070,384 tCO2e	Total Energy Costs (\$)	963,105,432	(212,880,874)	(121,535,065)	(23,63	
scenario, a 10% reduction over the study period. The total emissions reduce from 1,947,431 tCO2e in the BAU to 1,820,240 tCO2e in				(11,255,062)	9,872,421	(15,5
	NG Cost (\$)	365,396,334	(201,321,887)	(130,986,389)	(7,7	
the solar for heating case. The CLGS has the highest energy savi		1				
Overall, the CLGS for DUH has the performs best in three out of	NPV (\$)		6,607,726	(2,938,927)	(2,2	
	LCOH (\$/kWh _{th})		(0.07)	(0.93)		
economics. Solar PV for electricity has the highest emissions rec	auction off BAU compared to other assessed scenarios.	LCOE (\$/kWh _e)				

