Towards Zero Waste: A Study in Reducing Non-Hazardous Lab Waste

Gideon Choi, MSc. Sustainable Energy Development, BSc. (Biochemistry), BEd.

Research Question: What Zero Waste design strategies will further reduce non-hazardous waste production at university labs?

Project Rationale and Background

- University of Calgary research labs produce high volumes of non-hazardous lab waste, including:
 - Unrecycled glass and plastic
 - Discarded lab equipment
 - Contaminated mixed recycling
- Estimated non-hazardous waste production: 20-25 tonnes

Blue Bucket Program

- Container for pointy end plastics and broken/unbroken glassware.
- Contents directed to city landfill
- Intended consequence – caretaker safety
- Unintended consequence – often confused with mixed recycling program.
- Pain points of Blue Bucket program highlights the importance of evaluating non-hazardous waste production at labs

Methodology

- Project Components and methodology
 - Literature review
 - Lab worker survey and analysis
 - Lab worker and expert interviews
 - Historical waste data analysis
 - Waste diversion GHG reduction calculations
 - Cost/effort matrix analysis

Project Design

- Recommendations based on 3 sections of Circular Economy ladder
 - Reimagine: Creating processes and procedures to minimize waste production
 - Repurpose: Maximize use and re-use of materials
 - Residuals: Maximize waste diversion

Results: Lab Worker Survey Summary

<table>
<thead>
<tr>
<th>Most Helpful Way to Improve Non-Hazardous Waste Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
</tr>
<tr>
<td>Disposal training seminar</td>
</tr>
<tr>
<td>Reminder emails</td>
</tr>
<tr>
<td>Waste Audit</td>
</tr>
<tr>
<td>Poster</td>
</tr>
<tr>
<td>Reduction targets workshop</td>
</tr>
<tr>
<td>Dedicated staff member</td>
</tr>
</tbody>
</table>

Top three choices to improve Blue Bucket disposal guidelines

- Additional pictures: 69%
- Extra descriptions: 43%
- Fewer descriptions: 1%
- More instructions for preparation: 36%
- Fewer instructions for preparation: 1%
- Guidance on hazardous/non-hazardous items: 24%
- Other: 13%

Analysis: Cost & Effort Matrix

<table>
<thead>
<tr>
<th>Sustainable Lab Activity Cost and Effort Categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution sustainability strategy driven</td>
</tr>
<tr>
<td>Lab-centric activities</td>
</tr>
<tr>
<td>Education oriented activities</td>
</tr>
</tbody>
</table>

Description: 23 sustainable lab activities ranked based on relative effort and relative cost and plotted on a matrix. Activities categorized into four types. Key recommendations highlighted (★ = Reimagine, ★★ = Repurpose, ★★★ = Residuals)

Recommendations: Reimagine (Designing Sustainable Systems)

- Attach infographic to all Blue Buckets
- Create and distribute videos demonstrating proper sorting of non-hazardous lab waste
- Facilities sends periodic reminder emails of waste sorting protocols

Recommendations: Repurpose (Maximize Use and Re-use)

- Implement specific waste stream for recycling lab glass and lab plastic. Promote amber glass sanitizing and reuse.
- Organize and implement lab equipment re-use and surplus sale program.
- Education campaign for green purchasing.

Recommendations: Residuals (Maximize Waste Diversion)

- Collect and distribute lab waste diversion statistics
- Lab waste diversion is tracked and distributed via online dashboard

Acknowledgements

Many thanks to my industry supervisor Ana Pazmino, academic supervisor Roxannia Joyasrings, University of Calgary Facilities Management and Office of Sustainability teams. Thank you also to Irene Herremans and Rachelle Haddock for their editing insights.

Research grant partners: Mitacs Business Strategy Internship, Nature’s, Ride, and Employment Social Development Canada

Video Showcase

Check out the 2 minute video summary

[Image 0x2366 to 3240x3240]