Techno Economic Feasibility of a Hydrogen Supply Using In-situ Generation from Hydrocarbons with Catalysts and Electromagnetic Heating

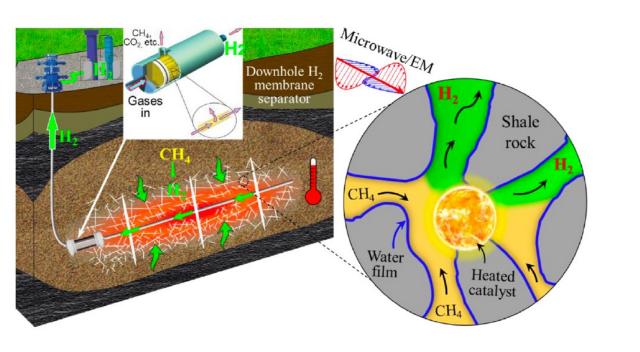
Caleb Neufeld, P.Eng., MSc. Student, SEDV, University of Calgary **Supervisor: Dr. Ian Gates**

Industry Partner: Mark Blue, TerraVent Environmental

Is hydrogen generated within hydrocarbon reservoirs using catalysts and electromagnetic heat an economical and technically feasible source of hydrogen?

Input Energy

Methods

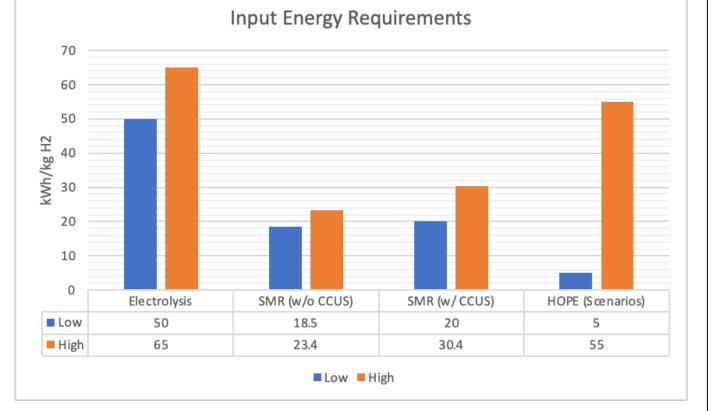

Data based on:

- Primary data from TerraVent and Dr. Qingwang Yuan at TTU
- Secondary data from literature review

Research question broken down into four components:

- Production costs
- Input energy requirements
- Process efficiency
- Environmental Impacts

- Sustainable, cost-efficient processes needed
- HydrOgen from PEtroleum Reservoirs HOPE
- New low-carbon hydrogen generation process utilizing hydrocarbon reservoirs
- First proposed by Dr. Qingwang Yuan out of Texas Tech University in 2021
- TerraVent collaboration in 2022
- Heatwave[®] Technology


Yan et. al., 2023, International Journal of Hydrogen Energy, 48(41), p. 15423. Copyright 2023 by Elsevier Ltd

TerraVent Environmental (https://www.terravent.com/technology). Copyright 2023 TerraVent Environmental Inc

F feed: coaxial transmis

Energy return on energy invested (EROEI) • E_{OUT}/E_{IN} (E_{OUT} = energy of process output; E_{IN} = energy of CAPEX, O&M, input fuels)

Simplified cost analysis run with range of input energy to determine input to make process competitive • Electrolysis and Steam methane reforming

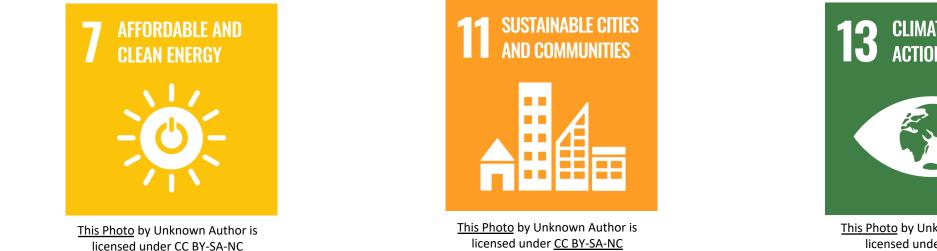
Process Efficiency

Hope Process

- Proof of concept research done to date
- Crude Oil up to 63% (Yuan et. al., 2022)
- Shale Gas up to 100% (Yan et. al., 2023)

Electrolysis

- Alkaline, Proton Exch. Membrane low temp processes
- 56% 70% (Hazrat et. al., 2022)
- SMR
- 74% 85% (Megia et. al., 2021)


<u>'his Photo</u> by Unknown Author is licensed under <u>CC BY-NC-NE</u>

Environmental Impacts

30.0

Hope process

Sustainable Development Goals

licensed under <u>CC BY-SA-NC</u>

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

Why Hydrogen?

- Importance of hydrogen to meet 2050 net-zero goals
 - Feasible way to convert existing infrastructure
 - Transportation, home heating
- Future regional hydrogen hubs
 - Edmonton hydrogen hub
 - Proposed Hydrogen City, Texas
- Government subsidies available

Cost Analysis

- HOPE process driven by electricity
- Electricity cost is main component of O&M
- Two scenarios run:

Low

High

- Current grid price of \$0.13/kWh
- Non-peak rates, renewable mix of \$0.08/kWh

HOPE energy input range of 5-25 kWh/kg H₂ result in costs competitive to electrolysis and SMR

Capital (\$)	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000
Debt split (%)	60%	60%	60%	60%	60%	60%
Capital split (%)	40%	40%	40%	40%	40%	40%
Capital Return Rate (%)	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%
Debt Interest Rate (%)	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%
Weighted Average Cost of Capital (%)	8.8%	8.8%	8.8%	8.8%	8.8%	8.8%
Project Life (years)	20	20	20	20	20	20
Capital Cost Factor (%)	10.80%	10.80%	10.80%	10.80%	10.80%	10.80%
Antenna Size (m)	1000	1000	1000	1000	1000	1000
Heat rate (kW/m)	2	2	2	2	2	2
Capacity Factor (%)	70%	70%	70%	70%	70%	70%
Process Efficiency (%)	90%	90%	90%	90%	90%	90%
Annual Total Power (kWH)	11,037,600	11,037,600	11,037,600	11,037,600	11,037,600	11,037,60
Electricity Rate (\$/kWh)	0.130	0.130	0.130	0.130	0.130	0.130
Hydrogen Generation Rate (kWh/kg)	55	45	35	25	15	5
Annual Hydrogen Estimate (kg)	200,684	245,280	315,360	441,504	735,840	2,207,520
Hydrogen Production Cost (\$/kg)	12.53	10.25	7.97	5.70	3.42	1.14

- GHG's generated remain in reservoir, downhole membrane allows selective H_2 production
- Grid vs renewable power
- No freshwater required for H₂ generation

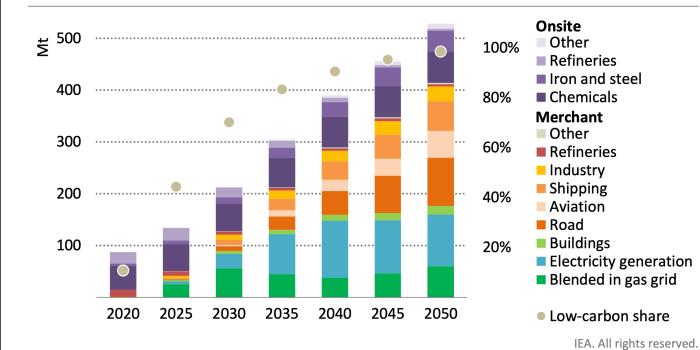
SMR process

- SMR without CCUS 10 to 13 kg $CO_2eq/kg H_2$ (incl. fugitive methane – up to 22) (Howarth & Jacobson, 2021)
- SMR with CCUS 5 to 6 kg $CO_2eq/kg H_2$ (incl. fugitive methane – up to 19) (Howarth & Jacobson,
- Freshwater use ~13 19 litre H2O/kg H₂ (Tarun
- et. al., 2007)

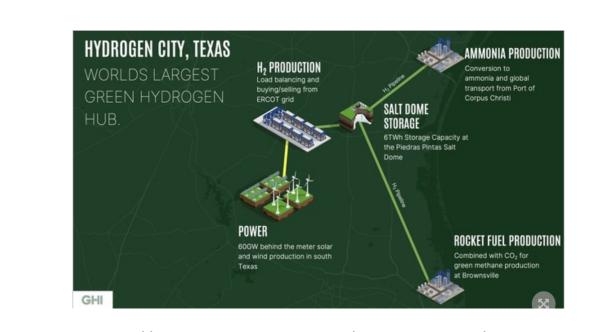
Electrolysis

- Renewable vs grid power (AB 0.52 kg CO2eq/kWh, TX 0.43 kg CO2eq/kWh) (Sadikman et. al., 2022; U.S. EIA, 2022)
- Freshwater use ~9 litre H2O/kg H₂ (Katebah et. al.,

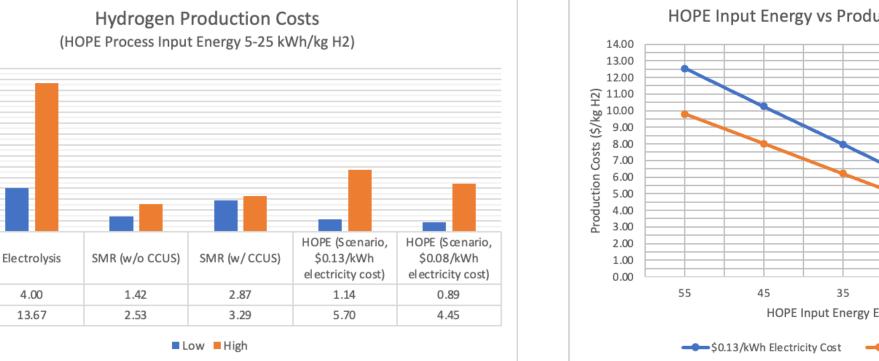
25.0 ± 20.0 र 15.0 10.0 5.0 0.0 Electrolysis Electrolysis SMR (w/o SMR (w/ CCUS) (Alberta) (Texas) CCUS) Low 10.8 High 21.7 19.2 Low High


- HOPE case shown assumes input energy of 25 kWh/kg H_2 - High cases for electrolysis and HOPE assume 100% grid power, low cases assume 100% renewable power

Conclusions and Recommendations


Results show HOPE process can be feasible

- H_2 generation option
- 5-25 kWh/kg H₂ energy input
- \sim \$1.00-\$4.50/kg H₂ (optimized power supply costs)
- Low GHG's
- No freshwater use
- Continued research recommended:
- HOPE process energy efficiency
- Optimized catalyst use
- Field scale efficiency
- Detailed process economic analysis


Figure 2.19 Global hydrogen and hydrogen-based fuel use in the NZE

IEA Net Zero by 2050 Roadmap, p. 75, https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector CORR.pdf

https://www.prnewswire.com/news-releases/greenhydrogen-international-announces-hydrogen-citytexas--the-worlds-largest-green-hydrogen-productionand-storage-hub-301494988.html#

HOPE Input Energy vs Production Cost Scenarios

35 25 15 HOPE Input Energy Estimates (kWh/kg H2)

\$0.13/kWh Electricity Cost

References

- Hazrat, M. A., Rasul, M. G., Jahirul, M. I., Chowdhury, A. A., & Hassan, N. M. S. (2022). Techno-economic analysis of recently improved hydrogen production pathway and infrastructure. Energy Reports, 8, 836–844. https://doi.org/10.1016/j.egyr.2022.12.148

- Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen? Energy Science & Engineering, 9(10), 1676–1687.

https://doi.org/10.1002/ese3.956

- Katebah, M., Al-Rawashdeh, M., & Linke, P. (2022). Analysis of hydrogen production costs in Steam-Methane Reforming considering integration with electrolysis and CO2 capture. Cleaner Engineering and Technology, 10, 100552. https://doi.org/10.1016/j.clet.2022.100552

- Megía, P. J., Vizcaíno, A. J., Calles, J. A., & Carrero, A. (2021). Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy & Fuels, 35(20), 16403–16415. https://doi.org/10.1021/acs.energyfuels.1c02501

- Sadikman, J. A., Duncanson, S., & Brinker, C. (2022, March 7). Alberta proposes new grid displacement factor with important implications for solar and wind projects. Osler. https://www.osler.com/en/blogs/energy/march-2022/alberta-proposes-new-griddisplacement-factor-with-important-implications-forsolar-and-wind-project

- Tarun, C. B., Croiset, E., Douglas, P. L., Gupta, M., & Chowdhury, M. H. M. (2007). Techno-economic study of CO2 capture from natural gas based hydrogen plants. International Journal of Greenhouse Gas Control, 1(1), 55–61. https://doi.org/10.1016/S1750-5836(07)00036-9

- U.S. Energy Information Administration. (2022, November 25). State-level emissions and electricity generation by type of fuel. https://www.eia.gov/tools/faqs/faq.php?id=74&t=11

- Yan, K., Jie, X., Li, X., Horita, J., Stephens, J., Hu, J., & Yuan, Q. (2023). Microwave-enhanced methane cracking for clean hydrogen production in shale rocks. International Journal of Hydrogen Energy, 48(41), 15421–15432. https://doi.org/10.1016/j.ijhydene.2023.01.052

- Yuan, Q., Jie, X., & Ren, B. (2022). Hydrogen generation in crushed rocks saturated by crude oil and water using microwave heating. International Journal of Hydrogen Energy, 47(48), 20793–20802. https://doi.org/10.1016/j.ijhydene.2022.04.217